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Objects, Concepts and Notations

Natural numbers: 0, 1, 2+3, · · ·
Rational numbers: 1/3, 2/6, · · ·
Real numbers: Gray-code, Signed digit code, · · ·
Computable functions: λxx, I, λxyx, K, · · ·



What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley and J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

In this talk, I will argue that they are, in fact, one and the same
calculus.
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History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.
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The syntax of the Lambda Calculus and Combinatory Logic

X ::= x, y, z, · · ·
M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0

(M N)0 stands for the application of the function M to its
argument N . It is often written simply MN , but we will always
use the notation (M N)0 for the application.



The Lambda Calculus

M,N ∈ Λ ::= x | λxM | (M N)0

λxM stands for the function obtained from M by abstracting x
in M .

β-conversion rule

(λxM N)0 → [x := N ]M

Example

(λxx M)0 → [x := M ]x = M

((λxyx M)0 N)0 → ([x := M ]λyx N)0 = (λyM N)0

→ [y := N ]M = M



Combinatory Logic

M,N ∈ CL ::= x | I | K | S | (M N)0

Weak reduction rules

(I M)0 →M

((K M)0 N)0 →M

(((S M)0 N)0 P )0 → ((M P )0 (N P )0)0

These rules suggest the following identities.

I = λxx

K = λxyx

S = λxyz((x z)0 (y z)0)0

By this identification, every combinatory term becomes a lambda
term. Moreover, the above rewriting rules all hold in the lambda
calculus.



Combinatory Logic (cont.)

What about the converse direction? We can translate every
lambda term to a combinatory term as follow.

x∗ = x

(λxM)∗ = λ∗xM
∗

((M N)0)
∗

= (M∗ N∗)0

We used λ∗ : X× CL→ CL above, which we define by:

λ∗xx := I

λ∗xy := (K y)0 if x 6= y

λ∗x(M N)0 := ((S λ∗xM)0 λ∗xN)0



Combinatory Logic (cont.)

The abstraction operator λ∗ enjoys the following property.

(λ∗xM N)0 → [x := N ]M

So, CL can simulate the β-reduction rule of the λ-calculus.
However, the simulation does not provide isomorphism. Therefore,
for example, the Church-Rosser property for CL does not imply the
CR property for the λ-calculus.

Recall the syntax of Λ and CL.

X ::= x, y, z, · · ·
M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0



Differences between λ-calculus and Combinatory Logic

In combinatory logic, if M is a normal term, then (S M)0 is
also normal.
But, in the λ-calculus, it can be simplified as follows:

(S M)0 → λyz((M z)0 (y z)0)0.

This means that the λ-calculus has a finer computational
granularity.

While (free) variables are indispensable in the definition of
closed λ-terms, closed CL-terms can be constructed without
using variables.

In Λ we cannot avoid the notion of bound variables, but we
don’t have the notion in CL.



Our Claim

Our claim is that, albeit the differences in the surface syntax of
λ-calculus and Combinatory Logic, they are actually one and the
same calculus (or algebra) which formalizes the abstract concept of
computable function.

We reconcile the diffrences in the syntax by introducing a common
syntactic extesion of the two calculi.
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Church’s syntax and Quine-Bourbaki notation (1)

λxλy(λz(z x)0 (x y)0)0
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Church’s syntax and Quine-Bourbaki notation (2)
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Quine-Bourbaki notation and de Bruijn notation
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Generalized de Bruijn notation (1)
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Generalized de Bruijn notation (2)
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Nameless binder and distributive law

λ(D E)n = (λD λE)n+1



Generalized Church’s syntax (1)
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Generalized Church’s syntax (2)
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Distributive Law: λx(D E)n = (λxD λxE)n+1.



α-reduction
λx

λy

@0

@0

yx
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I0

λxx→α I0, λxλyx→α I1, λxλyλzx→α I2, . . .

λxIk →α λIk, λxλIk →α λλIk, λxλλIk →α λλλIk, . . .

α-reduction rules can compute α normal form.
To achieve this, we must extend Church’s syntax!



Common extension of lambda calculus and combinatory logic

Definition (The datatypes M, Λ and CL)

M,N ∈ M ::= x | Ik | λxM | λM | (M N)i (i, k ∈ N)

M,N ∈ Λ ::= x | λxM | (M N)0

M,N ∈CL ::= x | I | K | S | (M N)0

We will write M0 for the subset {M ∈ M |M is closed} of M.
Combinators I, K and S are definable in M0 as abbreviations:

I := I0

K := I1

S := ((I2 λλI0)3 (λI1 λλI0)3)
3



M as an extension of combinatory logic

In order to make

M,N ∈ M ::= x | Ik | λxM | λM | (M N)i

an extension of combinatory logic, we embedded the S combinator
in M by the following informal computation.

S = λxyz((x z)0 (y z)0)0

= ((λxyzx λxyzz)3 (λxyzy λxyzz)3)
3

= ((I2 λλI0)3 (λI1 λλI0)3)
3



α-reduction

Definition (One step α-reduction on M)

λxλ
iIk →1α λ

i+1Ik
E1

λxλ
ix→1α Ii

E2
x 6= y

λxλ
iy →1α λ

i+1y
E3

λ∗(M N)i →1α (λ∗M λ∗N)i+1 D
M →1α M

′

λ∗M →1α λ∗M
′ C1

M →1α M
′

(M N)i →1α (M ′ N)i
C2

N →1α N
′

(M N)i →1α (M N ′)i
C3

Definition (α-nf)

M is an α-nf if M cannot be simplified by one step α-reduction.



α-reduction (cont.)

Example

This example shows how the variable-binders λx and λy are
eliminated by one step α-reductions.

λxλy(y x)0 →1α λx(λyy λyx)1

→1α λx(I λyx)1

→1α λx(I λx)1

→1α (λxI λxλx)2

→1α (λI λxλx)2

→1α (λI K)2



α-reduction (cont.)

Remark

Every M ∈ M can be reduced to a unique α-nf, and we will
write Mα for it.

We have α-equality =α by writing M =α N for
Mα = Nα.

The α-normalizing function (−)α : M→ M is idempotent,
and we will write L for its image.

Traditional λ-calculus studied the structure of the setoid
(Λ,=α). We will work on L which is a pure datatype, free
from the concept of α-equality.



The datatype L

We have written L for the following subset of M.

L := {M ∈ M |M is an α-nf}

We can also define L directly by the following grammar (inductive
definition).

Definition (The datatypes T and L)

t ∈T ::= λiIk | λix
M,N ∈L ::= t | (M N)i

Elements of T are called threads.



The datatype L0

Recall that M is defined by:

M,N ∈M ::= x | Ik | λxM | λM | (M N)i (i, k ∈ N)

We will write L0 for the following subset of M0.

L0 := {M ∈ M0 |M is an α-nf}

We can also define L directly by the following grammar (inductive
definition).

M,N ∈ L0 ::= λiIk | (M N)i

If we write Iik for λiIk, we have

M,N ∈L0 ::= Iik | (M N)i



Height and Thickness of L0-terms

M,N ∈ L0 ::= Iik | (M N)i

Definition (Height (Ht) and Thickness (Th) of L0-terms)

Ht(Iik) := i+ k + 1,

Ht((M N)i) := i.

Th(Iik) := 0,

Th((M N)i) := Th(M) + Th(N) + 1.

Remark
Thickness of M is obtained by counting the number of
applications in M . Since all the L0 terms are constructed from
natural numbers by projections and applications, all the
metamathematical arguments about L0 boil down to arguments
about natural numbers (=, <,+).



Well-formed L0-terms

We define well-formed L0-terms inductively as follows.

1 Iik is well-formed.

2 (M N)i is well-formed, if M , N are well-formed,
Ht(M) ≥ i and Ht(N) ≥ i,

We will write L+
0 for the set of well-formed L0-terms. Well-formed

L0-terms exacltly correspond to traditional closed λ-terms.
Namely, give an L0-term M , it is the α-nf of a closed λ-term.



Well-formed L0-terms (cont.)

We will study the λ-calculus enitrely working within the set L+
0 of

well-formed L0-terms. We will do this in the following order:

1 Eliminate ξ-rule.

2 Eliminate η-equality. Just as we defined α-equality on M, we
define η-equality on L0 and will work on the setoid
L0η := (L0,=η).

3 Reformulate β-rule by eliminating substitution and
introducing instantiation. The reformulated β-rule allows us
to apply the rule without the need of applying ξ-rule first.



Elimination of ξ-rule

The ξ-rule in the λ-calculus is the following rule:

Γ, x ` M →β N

Γ ` λxM →β λxN

In case we can assign simple types to terms, the rule becomes:

Γ, x : σ ` M : τ →β N : τ

Γ ` λxM : σ ⊃ τ →β λxN : σ ⊃ τ

But, we have no variables in L+
0. So we cannot even formulate the

ξ-rule! The real problem is how can we develop λ-calculus without
ξ? We can solve this problem by moving from Gentzen-Martin-Löf
style hypothetical judgements to Frege-Hilbert style categorical
judgments.



Elimination of ξ-rule (cont.)

In the framework of hyothetical judgements, the implication
introduction rule is:

Γ, σ ` τ
Γ ` σ ⊃ τ

But, in the framework of categorical judgments, it bocomes trivial:

` Γ ⊃ σ ⊃ τ
` Γ ⊃ σ ⊃ τ

We can see the equivalence of these formulations by deduction
theorem of propositional logic. In the same way, we can develop λ
without ξ-rule.



η-equality
In the λ-calculus, η-conversion rule is:

Γ ` λx(M x)0 →η M

where x is not free in M .

In L+
0, noting that λx(M x)0 = (λxM λxx)1 = (λM I0)1,

the rule becomes:

Γ ` (λM I)1 →η M

It is necessary to rewrite this in the form of categorical judgment,
but we skip the details. After showing confluence of η-reduction,
we can introduce η-equalrity =η as an equivalence relation on L+

0.

In traditional λ-calculus, η-conversion is introduced after
β-conversion is introduced. However since we think that
extensionality is an essential property of (computable) functions,
we introduced η-equality before introducing β-conversion.



β-conversion

In the λ-calculus, β-conversion rule is:

Γ ` (λxM P )0 →β [x := P ]M

In L+
0, we replace substitution by instantiation (〈M P 〉i) and

define the rule by:

Γ ` (M P )0 →β 〈M P 〉0

where Ht(M) > 0. Rewriting it into catgorical judgment form,
we have:

` (M P )i →β 〈M P 〉i

where Ht(M) > i. So, our β-rule can be applied directly under
λ-binders without using ξ-rule.



Instantiation at level n

If M,P ∈ L+
0 and Ht(M) > n, then 〈M P 〉n is defined by the

following equations.

〈λiIk P 〉n :=


λi−1Ik if n < i,

↑kn P if n = i,

λiIk−1 if n > i.

〈(M N)i+1 P 〉n := (〈M P 〉n 〈N P 〉n)i.

Lift ↑kn is defined by

↑kn λ
j I` :=

{
λj+kI` if n ≤ j,
λj I`+k if n > j.

↑kn (M N)j := ( ↑kn M ↑kn N)j+k.



Current status and future plan

We have defined and proved most of the results in this talk in
Minlog. For example, we proved Church-Rosser property of
Lβ by the residual method.

Several properties of η-equality are still to be formally proved.

It is easy to internalize instantiation operation. By
internalizing it we expect to have a natural first-order
axiomatization of λβ-calculus.

Formally prove the expected connection between M0 and L0



Conclusion: M and L+

0

We may think of M as a common notation system for both
λ-calculus and Combinatory Logic, and its sublanguage L+

0 as a
notation system for the pure Combinatory Logic.

M,N ∈ M ::= x | Ik | λxM | λM | (M N)i

M,N ∈L+

0 ::= Iik | (M N)i

In L+
0 we can have the best of both λ-calculus and Combinatory

Logic. For example, substitution is replaced by instantiation, and
proof of CR for L implies proof of CR for M (and hence for Λ).



External syntax Λ for positive L-terms

We use prefixes [u1 · · ·un] (n ≥ 0) (also written [ū]) in the
following definition of raw terms:

Raw terms 3 K,L ::= [u1 · · ·un]z | [u1 · · ·un](K L)

External syntax Λ is defined inductively as follows.

x occurs in ū
[ū]x : Λ

[ū]K : Λ [ū]L : Λ

[ū](K L) : Λ

[ū]K ([ū]L) is call the car (resp., cdr) of [ū](K L)

Remark
Raw terms allow open terms, but Λ defines exactly the closed
λ-terms. Note that the prefix part of a Λ-term contains one or
more variables.



Analysis of projections

The terms created by the rule below are called projections. They
are indeed projection functions used in the theory of pritimitive
recursive functions.

[u1 · · ·ui x v1 · · · vk]x : Λ,

where x may appear in u1, . . . , ui, but may not appear in
v1, . . . , vk.

After taking i+ k + 1 arguments, U1, . . . , Ui, X, V1, . . . , Vk,
the function [u1 · · ·ui x v1 · · · vk]x returns X. Here, we call k
the de Bruijn index of the projection, and i+ k + 1 the height of
the projection. Since a projection is completely characterized by its
height and index, we will use this fact to define the notion of
α-equality of Λ-terms.



α-equality on Λ

Writing ū, v̄ for sequences of variables, we define the α-equality of
Λ-terms as follows.

1 Two projections are α-equal⇐⇒ they have the same height
and index.

2 [ū](K L) =α [v̄](K′ L′) ⇐⇒
[ū]K =α [v̄]K′ and [ū]L =α [v̄]L′.

Here is an example:

height = 2, index = 1

[x y]x =α [y x]y

height = 2, index = 0

[x y]y =α [y x]x

[x y](x y) =α [y x](y x)



Height of Λ-terms

1 Ht([ū]x) = n, where n is the length of the variable sequence
ū = u1, . . . , un.

2 Ht([ū](K L)) is the length of ū.

A term has height n if it has a prefix of length n and then
followed by a variable or by an application.

Height of a term is an extremely simple and natural concept on
Λ-terms, but it plays a very important role in the study of the
λ-calculus.



β-conversion on Λ

Given two terms M and N such that Ht(M) > n and
Ht(N) ≥ n, we define the instantiation of M by N at height n,
written 〈M N〉n inductively as follows. We first give the
definition for the case n = 0

1 〈[xv̄]x L〉0 := [v̄]L.

2 〈[xv̄]y L〉0 := [v̄]y, if x 6= y.

3 〈[xv̄](K K′) L〉0 := [v̄](J J ′), if 〈[xv̄]K L〉0 = [v̄]J
and 〈[xv̄]K′ L〉0 = [v̄]J ′.

The β-conversion rule for the case n = 0 is defined as follows.
We assume that Ht(M) > 0.

(M P ) →β 〈M P 〉0



β-conversion on Λ

Given two terms M and N such that Ht(M) > n and
Ht(N) ≥ n, we define the instantiation of M by N at height n,
written 〈M N〉n, inductively as follows. We assume that the
length of ū is n.

1 〈[ūxv̄]x [ū]L〉n := [ūv̄]L.

2 〈[ūxv̄]y [ū]L〉n := [ūv̄]y, if x 6= y.

3

〈[ūxv̄]K [ū]L〉n = [ūv̄]J 〈[ūxv̄]K′ [ū]L〉n = [ūv̄]J ′

〈[ūxv̄](K K′) [ū]L〉n = [ūv̄](J J ′)

The β-conversion rule at height n is as follows. We assume that
the length of ū is n.

[ū]([xv̄]K L) →β 〈[ūxv̄]K [ūL]〉n



Translation of Λ-terms into positive L-terms

We can translate each Λ-term M into a positive L-term
( M )Λ→L as follows. The translation is bijective module
α-equality.

1 ( [u1 · · ·ui x v1 · · · vk]x )Λ→L := Iik.

2 ( [ū](K L) )Λ→L := (( [ū]K )Λ→L ( [ū]L )Λ→L)n,
where n is the length of ū.



Related works

Frege’s Begriffsschrift.

Gentzens’ natural decuction system and sequent calculus.

Brigitte Pientka: Modal Context calculus, Explict Context.
Beluga proof assistant.


